Large-conductance cholesterol-amphotericin B channels in reconstituted lipid bilayers.

نویسندگان

  • Solomon Yilma
  • Jennifer Cannon-Sykora
  • Alexandre Samoylov
  • Ting Lo
  • Nangou Liu
  • C Jeffrey Brinker
  • William C Neely
  • Vitaly Vodyanoy
چکیده

The antimycotic activity of amphotericin B (AmB) depends on its ability to make complexes sterols to form ion channels that cause membrane leakage. To study this phenomenon, surface pressure (pi) as a function of surface area (A) and pi-A hysteresis were measured in monolayers of AmB-cholesterol mixtures on the water-air interface. The most stable monolayers were produced from molecules of AmB and cholesterol with 2:1 stoichiometry. At this ratio, AmB and cholesterol interact to form ion channels in lipid bilayers with millisecond dwell times and conductances of 4-400 pS. The AmB-cholesterol complexes assemble in three, four, etc., subunit aggregates to form ion channels of diverse and large-conductances. Their I-V characteristics were linear over a range of +/-200 mV. The channel currents were inhibited by the addition of tetraethylammonium (TEA), potassium channel blocker, to the cis-side of the membrane. Likewise, AmB-cholesterol complexes reconstituted in membrane-coated nanoporous silicon dioxide surfaces showed single channel behavior with large amplitudes at various voltages. Large-conductance ion channels show great promise for use in biosensors on solid supports.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amphotericin B and Cholesterol in Monolayers and Bilayers

The antimycotic activity of amphotericin B depends on its ability to make complexes with cell membrane sterols. Surface pressure (π) as a function of surface area (A) and π-A hysteresis were measured for monolayers of amphotericin B/cholesterol mixtures on the water/air interface. Specific area per molecule of amphotericin B and free energy of mixing were calculated as a function of concentrati...

متن کامل

Probing Amphotericin B Single Channel Activity by Membrane Dipole Modifiers

The effects of dipole modifiers and their structural analogs on the single channel activity of amphotericin B in sterol-containing planar phosphocholine membranes are studied. It is shown that the addition of phloretin in solutions bathing membranes containing cholesterol or ergosterol decreases the conductance of single amphotericin B channels. Quercetin decreases the channel conductance in ch...

متن کامل

On the one-sided action of amphotericin B on lipid bilayer membranes

The one-sided action of the polyene antibiotic, amphotericin B, on phospholipid bilayer membranes formed from synthetic phosphatidylcholines (DOPC and DPhPC) and sterols (ergosterol and cholesterol), has been investigated. We found formation of well-defined ionic channels for both sterols and not only for ergosterol-containing membranes (Bolard, J., P. Legrand, F. Heitz, and B. Cybulska. 1991. ...

متن کامل

The Interaction of Dipole Modifiers with Polyene-Sterol Complexes

Recently, we showed that the effect of dipole modifiers (flavonoids and styrylpyridinium dyes) on the conductance of single amphotericin B (AmB) channels in sterol-containing lipid bilayers primarily resulted from changes in the membrane dipole potential. The present study examines the effect of dipole modifiers on the AmB multi-channel activity. The addition of phloretin to cholesterol-contain...

متن کامل

Ethanol potentiation of calcium-activated potassium channels reconstituted into planar lipid bilayers.

We examined the actions of ethanol on the single channel properties of large conductance Ca2+-activated K+ (BK) channels isolated from skeletal muscle T-tubule membranes and incorporated into planar lipid bilayer membranes. We have taken advantage of this preparation, because it lacks most elements of cellular complexity, including cytoplasmic constituents and complex membrane lipid composition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 22 7  شماره 

صفحات  -

تاریخ انتشار 2007